1 Software Development Standards and Conventions

1.1 Source Files

· Each class defined in the system will have it’s own java file, except where a private class is needed.

· The java file will have a root file name identical to the class name with the extension, “.java”.

· The java file will contain the implementation of all methods belonging to that class.

1.2 Naming Conventions

· Class and type names should be nouns, with the first word and each internal word capitalized.

· Method names should be verbs.

· Method and attribute names, struct member names, and local variable names should begin with a lower case letter and have each internal word begin with a capital letter.

· Variable names should be short, and descriptive. Single-letter variable names, should be reserved for temporary variables and loop counters.

· Public variables should not be used.

· The underscore character, “_”, shall not be used anywhere in class, method, or variable names, except in final (constant) variables.

· final variables shall be all in capital letters with words separated by a ‘_’.

· For methods that set an object’s attribute, prefix the method name with “set”. For methods that return the value of an object’s attribute, use a “get” prefix. For methods that return a True/False for a query, use an “is” or “has” or some verb prefix that makes sense (when it makes sense to do so). For instance:

setImageType()

getImageType()

 hasProjection()
1.3 Comments

1.3.1 Comment Usage

· Comment statements shall be placed throughout the software to increase the understandability, readability and maintainability of the code

· The comments in a function should be readable as an outline of the function, so that the reader can understand the logical progression of the processing steps being taken, without reference to the actual code.

· Within declarations, each member attribute or method of a class, or data structure should have a short comment explaining its purpose.

· In particular, attributes representing a measurement should be explicitly marked with their unit of measure, and appropriate reference datum. For example:

/* Direction from ownship to target, (Degrees clockwise from true north) */

double bearing;

· Changes to the source code shall not be annotated with names, initials, dates or reason changed, except as provided for in the class and method header sections, described below. The comments within the body of the code should explain what the code does, not what it used to do.

· CVS commit log comments shall include detailed descriptions of changes to the committed file.

· Follow the javadoc commenting conventions and use them liberally

1.3.2 Header formats

· A header shall be placed at the beginning of each class declaration, (in the .java file). Use the following format for class declaration headers:

/**

 * DESCRIPTION

 *

 * @author Peter Gerken

 */

· A header shall be placed at the beginning of each method definition, (in the .java file). Use the following format for method definition headers:

/**

 * DESCRIPTION

 *

 * @author Ross Paul

 * @param paramName what paramName is

 * @version $Revision:$

 * @return Description of what comes back (Not the type!, but info!)

 */

· Optionally include the following line if the function returns an exception

* @exception paramType info on the param

1.3.3 Non-header Comment Styles

NOTE THE DIFFERENCE BETWEEN “/**” and “/*”

There are three basic styles of non-header comments: single-line, multi-line, and trailing.

· A single-line comment is on a line by itself, indented to the level of the code that follows.

 /* If the target is within the sensor’s detection range */

 if (targetRange <= sensor.getMaxRange() &&

 targetRange >= sensor.getMinRange())

 {

 /* Prevent redundant reporting on the target */

 . . .

 }

· If a comment will not fit on a single line, the following multi-line style should be used:
 /* If locally reported target position is with the detection

 * range of the remote sensor. */

 if (targetRange <= sensor.getMaxRange() &&

 targetRange >= sensor.getMinRange())

 {

 /* Prevent the local sensor report on that target from

 * being propagated */

 . . .

 }
· Trailing comments are short comments that follow the code that they describe, on the same line.

 Double range; /* Distance from sensor to target, (meters) */
The // comment delimiter should be used for commenting out lines of code. It may be used, instead of /*…*/, for trailing comments, but it should not be used for single-line or multi-line comments, to avoid confusing lines of comments with lines of commented-out code.

1.4 Indentation

· Nested code blocks should be indented 3 or 4 spaces relative to the enclosing code block. Be consistent throughout the file.

· Do not use tabs. The use of spaces instead of tabs ensures that the code looks the same in any editor, regardless of tab stop settings.

· The opening brace of a class declaration or method definition should be in the first column, on a line by itself. The closing brace should be on a line by itself, aligned with the opening brace.

· The opening brace of a code block associated with a control structure keyword, (if, while, for, switch), should be at the end of the line, following the closing ‘)’, of the expression.

· Alternatively, the opening brace of a code block may also be in the first column, on a line by itself.

· Put closing braces for a control structure on a line by itself, aligned with the keyword. An exception to this is when and “else” clause is attached to an “if” statement.

1.5 Line Length and Wrapping

· Avoid lines longer than 80 characters, since they’re not handled well by many terminals and tools. When possible, lines that exceed 80 chars should be broken and indented so as to maximize readability.

· When an expression will not fit on a single line, break it according to these general principles:

· Break after a comma.

· Break before or after an operator. (Be consistent)

· Prefer higher-level breaks to lower-level breaks. That is, you should minimize the number of paren pairs that enclose the break.

· Align the continuation of the broken expression, on the new line, with the beginning of the expression on the previous line.

· If the above rules lead to confusing code or to code that’s squished up against the right margin, just indent eight spaces instead.

 Examples:

 /* Break after a comma, and align the continuation. */

someMethod(longExpression1, longExpression2, longExpression3,

 longExpression4, longExpression5);

 /* Break before an operator. */

longName1 = longName2 * (longName3 + longName4) +

 (4 * longName5);

/* AVOID this, in favor of the previous example */

longName1 = longName2 * (longName3 + longName4) + (4 *

 longName5);

 /* To AVOID scrunching code up against the right margin, */

 longVariableName = someObject.longMethodName(firstArgument,

 secondArgument,

 thirdArgument,

 fourthArgument);

 /* Just indent the next line 8 spaces */

 longVariableName = someObject.longMethodName(firstArgument,

 secondArgument, thirdArgument, fourthArgument);

· A string constant that must be broken due to overrunning the length of a line can be broken by separating it into two or more consecutive strings separated only by a ‘+’. Example:

 String text = “This is a string constant that is “ +

 “too long to fit on a line without “ +

 “breaking it up.”)

1.6
Declarations

· One declaration per line is recommended, since it encourages commenting. In other words,

 int level = 0; /* Level of indentation */

 int size = 0; /* Number of rows in the table */

 is preferred over

 int level, size;

· Local variables should be initialized where they’re declared. The only reason not to initialize a variable where it’s declared is if the initial value depends on some computation occurring first.

· Put declarations only at the beginning of blocks. (A block is any code surrounded by curly braces “{“
 and “}”.) Don’t wait until a variable’s first use to declare it. An exception to this rule is the index of a for loop.

· Variables should be declared at the beginning of the code block that gives the variable the smallest necessary scope. (Think globally, code locally.)

1.7 Statements

· Each line should contain at most one statement. Example:

 argv++; /* Correct */

 argc++; /* Correct */

 argv++; argc++; /* AVOID */

· Avoid chain assignments

· All switch statements shall have a default block.

· The if statement may take any of the following forms:

 if (condition)

if (condition) {

 {

 statements;

 statements;

}

 }

 if (condition)

if (condition) {

 {

 statements;

 statements;

} else {

 }

 statements;

 else

}

 {

 statements;

 }

 if (condition)

if (condition) {

 {

 statements;

 statements;

} else if (condition) {

 }

 statements;

 else if (condition)

} else {

 {

 statements;

 statements;

}

 }

 else

 {

 statements;

 }

· A for statement should have any of the following form:

for (init; condition; update)
for (init; condition; update) {

 {

 statements;

 statements;

}

 }

· A while statement should have any of the following form:
 while (expression)

while {

 {

 statements;

 statements;

}

 }

· A switch statement should have the following form:
 switch (condition)
 {
 case val1:

 statements;

 /* Fall through */

 case val2:

 statements;

 break;

 case val3:

 statements;

 break;

 default:

 statements;

 break;

 }

· A try-catch statement should have the following form:
 try {

 statements;

 }

 catch(ExceptionType1 ex1)

 {

 statements;

 }

 catch(ExceptionType1 ex2)

 {

 statements;

 }

· Always use braces, {}, even when there is only one statement, or even no statements at all to include between them:

 while (condition)

while {

 {

 count++;

 count++;

}

 }

 /* All the work is done in the init, condition, and update */

 for (init; condition; update)
for (init; condition; update) {

 {

}

 }

1.8 Programming Practices

· Don’t make any data members public. Data members should only be accessed through get*() and set*() accessor methods. Don’t provide accessor methods for a data member unless there is a clear need.

· Because of the overhead incurred by recursive function calls, unless there is some compelling reason to use recursion, it should be avoided, in favor of iteration.

· Static methods or data members should be referenced through the class, rather than through an instance of the class. Example:

 ClassName.StaticMethod(); /* OK */

 ClassName instance;

 instance.StaticMethod(); /* AVOID */

· Explicitly use the type cast operator in arithmetic expressions involving different types. This makes the code more readable and prevents any errors that could occur from automatic type conversions.

· To minimize unwanted side effects and confusion, assignment operators should be avoided within expressions of conditional statements.

 if ((variable = func()) == 0) /* AVOID */

 {

 . . .

 }

· Numerical constants, (literals), should not be coded directly, except for –1, 0, and 1. Instead, create a public static final with a name that describes the significance of the numerical constant. Example:
 public static final MAX_TRACK_COUNT = 200;

· Use parentheses liberally, within expressions, to eliminate any confusion concerning operator precedence. For example:

 if ((a == b) && (c == d)) /* OK */

 if (a == b && c == d) /* Not So Good */

· Use “FIXME” in a comment, to flag code that needs to be fixed or improved. Examples:

 /* Obtain a WorldModel, for coordinate conversion */

 /* FIXME We are currently using a SphericalEarth WorldModel.

 * This will not do for the final release. It needs to be

 * replaced with a WGS84-based WorldModel, as soon as we can

 * obtain or create one. */

 WorldModel *earth = new SphericalEarthModel();

 /* Calculate the speed of the target */

 /* FIXME There is a bug in Target::getSpeed(). For now, just

 * set the speed to 0.0, to keep from crashing.

 */

 speed = 0.0;

 //speed = target.getSpeed();

· Use “TODO” to specify operations the still need to occur

/* TODO Need to design a gui interface! */

 /** display the target */

public void display();

1.9 Error Handling

· When Catching an exception, always make sure to print the stack trace in addition to any explicit error messages. For example:

try{

…

}catch(Excpetion e){

System.out.println(“Tried to access iterate through a null object!!!!”);

e.printStackTrace();

}

5
SOFTWARE CM
UNCLASSIFIED

