CS 327 - University of Illinois - Urbana Champaign

dbViZ
Use-Case-Realization Specification: Import Schema From SQL File
Version 1.0

Revision History

Date
Version
Description
Author

04-Dec-2002
1.0
Document created
Aleksandra Faust

11-Dec-2002
1.1
Renamed the document
Aleksandra Faust

Table of Contents

41.
Introduction

1.1
Purpose
4
1.2
Scope
4
1.3
Definitions, Acronyms, and Abbreviations
4
1.4
References
4
1.5
Overview
4
2.
Flow of Events—Design
5
2.1
SQL Directory Class
6
2.1.1
Constructor
6
2.1.2
Import
6
2.2
SQL File Class
6
2.2.1
Constructor
6
2.2.2
Import
6
2.3
SQL Statement Class
6
2.3.1
Constructor
6
2.3.2
Import
6
2.4
Parser
6
2.4.1
Constructor
7
2.4.2
GetNextToken
7
2.4.3
LookupNextToken
7
2.4.4
SearchFor
7
2.5
SQL Create Table Class
7
2.5.1
Import
7
2.5.2
ImportTableDetail
7
2.5.3
ColumnImport
7
2.5.4
TableConstraintImport
8
2.5.5
ForeignKeyImport
8
2.6
Create Schema Class
9
2.6.1
Import
9
3.
Derived Requirements
9

Use-Case-Realization Specification: Import Schema From SQL File
1. Introduction

This document is the design document for Importing Load Saved Schema use case.

1.1 Purpose

The purpose of this document is to give offer design solution for Load Saved Schema use case. Classes are specified and each class method is defined in terms of parameters and purpose.

This document should give enough information that use case implementation is possible.

1.2 Scope

The use case realization specification covers:

· class diagram needed to implement this use case

· method contract

· sequence diagram (future)

1.3 Definitions, Acronyms, and Abbreviations

Please see project Glossary document for all related definitions, acronyms, and abbreviations.

1.4 References

This document is based on:

- Load Saved Schema Use Case: http://jdbv.sourceforge.net/ElaborationDocs/UseCases/LoadSavedSchemaUseCase.doc

- SQL Sub Language Grammar Specification: http://jdbv.sourceforge.net/ElaborationDocs/SQLGrammarSpec.txt

1.5 Overview

[This subsection describes what the rest of the Use-Case Realization Specification contains and explains how the document is organized.]

2. Flow of Events—Design

[image: image1.wmf]directoryName

Import(Schema)

SQLDirectory

fileName

Import(Schema)

SQLFile

statementText

Import(Schema)

getNextToken()

lookAheadNextToken()

SQLStatement

statementText

Import(Schema)

pImportColumns(Table)

pAddColumn(Table)

SQLCreateTable

statementText

Import(Schema)

SQLCreateSchema

text: String

delimiter[]:String

currentPosition

getNextToken():String

lookAheadNextToken():

String

Parser

0-1 *

0-1

*

1

0-1

0-1 1

SQL Import Cass Diagram

Created by: Aleksandra Faust

12/01/2002

Represents classes needed for creating Schema object from a

directory or a file.

The class diagram above represents the classes needed for realization of Load Saved Schema use case. SQL directory class in not needed to loading from a file, but existence of this class can easily extend this use case to loading schema from a directory.

After user selects a file to be used for the import:

· SQLFile class is created and initialized to the provided FileName,

· New Schema object is created

· Import method in SQLFile is called and newly created Schema object is passed to it

2.1 SQL Directory Class

2.1.1 Constructor

Input:

directory name

Purpose:
Initializes object to provided directory.

2.1.2 Import

Input/Output:
Schema object

Purpose:
For each file in the directory

Creates new file object

Calls File. Imprt(Schema)

2.2 SQL File Class

2.2.1 Constructor

Input:

File Name

Purpose:
Initializes the object to the provided file name.

Creates Parser object with <statement delimiter> as delimiter

Reads the content of the file

Sets the Parser’s Text to the content of the file

Closes the file

2.2.2 Import

Input/Output:
Schema

Purpose:
Gets the next token from the parser.

While the token is available

Creates SQL Statement object with given token

Calls SQL Statement. Import method and passes Schema to it.

Gets the next token.

2.3 SQL Statement Class

2.3.1 Constructor

Input:

Statement’s text

Purpose:
New Parser that handles individual SQL statements is created. (Delimiter is <delim>)

Looks up enough of parsed text to determine the type of the statement

Creates appropriate child statement. (Unknown statements should be handled here, either by having other child type that won’t do anything, or in some other way)

2.3.2 Import

Input/Output:
Schema

Purpose:
Calls Child Import

2.4 Parser

This class is performs lexical analysis on the given string that is being parsed. It keeps the track of how much of the string has been parsed.

2.4.1 Constructor

Input:

Text to be parsed

Delimiter that helps distinguishes between words in the parsed text.

Purpose:
Initializes the parser. The initial current position is beginning of the string.

2.4.2 GetNextToken

Output:

Token String

Purpose:
Returns next token in the string. Updates the current position in the string to be on the first character after the returned token. <ignore> characters are never returned as a part of token.

2.4.3 LookupNextToken

Input:

Order of the token to be return.

Output:

Token

Purpose:
Same as GetNextToken, with one exception, current position remains unchanged. Order of the token, specifies which next token to be returned: first, second, etc…

2.4.4 SearchFor

Input:

List of Characters to search for

Output:

First encountered character or Null if none are found

Purpose:
Skips all unwanted or unknown text until first occurrence of text of interest is found.

2.5 SQL Create Table Class

This class parses create table statement, creates new table object, and adds it to the schema.

2.5.1 Import

Input/Output:
Schema

Purpose:
Copy Schema into tempSchema

Skip tokens until at table name

Create new Table object with TableName

Add newly created table object to the tempSchema

Search for “(”

If not found return; (Invalid statement)

Call ImportTableDetail(Table)

2.5.2 ImportTableDetail

Input/Output:
Schema and Table objects

Purpose:
Repeat

Determine if the next section is <column definition>, <table constraint>, “,” or “)”

Call ColumnImport or TableConstraintImport

Until “)” is encountered

2.5.3 ColumnImport

Input/Output:
Schema and Table objects

Purpose:
Get Column Name

Get the next token until blank is encountered – that’s column data type

Create new column with name and data type provided

Repeat

Search for , or), “Primary Key”, or “References”

If “primary key” encountered

Set column as Key Column

If “References” encountered

Call ForeignKeyImport(Schema, SourceTable, SourceColumns)

Add Column to Table

Until “)” is encountered

2.5.4 TableConstraintImport

Input/Output:
Table and Schema objects

Purpose:
Search for “Primary Key” Or “FOREIGN KEY”

If “Primary Key” encountered

Search for “(“

Repeat

Search for token or “,”

If token

Token is column name

Find the column in the table, mark it as a key

Until “)”

If “FOREIGN KEY” encountered

Get Token

Token is SourceTable

Search”(“

Repeat

Get token

Token is a column name in the current table

Find the column and add it to the SourceColumn list

Search for “,” or “)”

Until “)”

Search “References”

Call ForeignKeyImport(Schema, SourceTable, SourceColumns)

2.5.5 ForeignKeyImport

Input/Output:

Schema, Table, sourceTable, SourceColumns

Purpose:

Get Table Name token

 Search for “(“

Repeat

Get ColumnName Token

Search for “,” or “)”

Until “)”

Find table with Table Name

Find Columns

Create new connection object with Table, newTable, column, and found columns

Add Connection object to Schema object

2.6 Create Schema Class

2.6.1 Import

Input/Output:

Schema object

Purpose:

Search for “CREATE Schema”

Get Token

The Token is Schema name

Assign Schema, the name

3. Derived Requirements

When parsing SQL if unknown statement is encountered, it will be skipped.

When parsing SQL, if an unknown option is encountered, it is ignored and the statement is still processed.

When parsing SQL, if an expected statement element in not encountered, all statement’s text is ignored until the element is found. If the end of statement is reached without encountering expected elements, the statement is treated as invalid and processed like that. If the expected element is found, the parsing continues ignoring the unknown part.

When parsing SQL, all blanks, tabs, and new lines are treated as a single blank. (<ignore>)

SQL Statement word ends with one of <delim> characters.

Parsed string is treated as case insensitive.

� EMBED Visio.Drawing.4 ���

PAGE

[image: image2.wmf]directoryName

Import(Schema)

SQLDirectory

fileName

Import(Schema)

SQLFile

statementText

Import(Schema)

getNextToken()

lookAheadNextToken()

SQLStatement

statementText

Import(Schema)

pImportColumns(Table)

pAddColumn(Table)

SQLCreateTable

statementText

Import(Schema)

SQLCreateSchema

text: String

delimiter[]:String

currentPosition

getNextToken():String

lookAheadNextToken():

String

Parser

0-1 *

0-1

*

1

0-1

0-1 1

SQL Import Cass Diagram

Created by: Aleksandra Faust

12/01/2002

Represents classes needed for creating Schema object from a

directory or a file.

_1100291915.vsd

