CS329 HW2

Larry Knox

JDBV project, Group 1. (other group members: Uday Kale, Jim Rarick, Brian Schoudel)
Lack of Cohesion of Methods (LCOM):

This metric is useful for finding classes that do several different things that aren’t related. This is calculated by comparing the number of pairs of classes that share instance variable with the pairs that have no common instance variables. Pairs that share instance variables are assumed to be cohesive; those that have none in common are assumed to lack cohesion. Truly non-cohesive classes should be split into classes that are cohesive. By running these metrics after each iteration we can see whether we’re making progress towards more cohesive code.
I used Understand for Java to generate the table of LCOM values below. The scitools.com website defines this metric as “100% minus average cohesion for class data members”* meaning that a class with shared data members for every pair of methods will have a LCOM value of 0 while a class with no shared data members will have a LCOM value of 100. The classes with the higher ratings warrant attention as candidates for breaking up. The following table shows the LCOM values for the classes in the JDBV project as of 2-19-2003.
Package.Class

 LCOM (Percent Lack of Cohesion)

diagram.Diagram:

90

diagram.TableGraphCell:

70

diagram.TableRenderer:

92

diagram.TableView:

83

gui.ColumnListModel:

 8

gui.ColumnListRenderer:

95

gui.ConnectionListModel:

28

gui.ConnectionListRenderer:

91

ui.DiagramPane:

87

gui.DiagramSelectionListener:

46

gui.ImportRegistryWindow:

68

gui.JDBVMenuBar:

76

gui.JDBVWindow:

83

gui.SplashWindow:

73

gui.StatusBar:

33

gui.TableInfoPanel:

50

gui.TableList:

50

gui.TableListModel:

48

gui.TableListRenderer:

 0

imports.ImportDefinition:

 0

imports.ImportRegistry:

68

imports.TestImportDefinition:

80

initListeners.(Anon_1):

 0

initListeners.(Anon_1):

 0

jdbv.AddTableAction:

41

jdbv.ExitAction:

41

jdbv.HelpAboutAction:

40

jdbv.ImportSchemaAction:

37

jdbv.JDBV:

87

jdbv.NewDiagramAction:

37

jdbv.RemoveTableAction:

41

schema.Column:

44

schema.Connection:

57

schema.Schema:

42

schema.Table:

60

sql.SqlGuiPanel:

60

sql.SqlImportDefinition:

71

TableGraphCell.ColumnComparator
:
 0

TableInfoPanel.(Anon_1):

 0

TableView.SizeHandle:

64

Understand for Java was the by far the easiest to use of the three tools that I actually installed and tried to use. I downloaded a trial version, so we will have to either take turns with a trial version each time we want to use it or try to get a copy to use for the semester.

Response For a Class (RFC):
A measure of worst case complexity of a class, this metric is particularly useful for evaluating potential testing requirements. Higher RFC levels indicate either larger classes or higher numbers of calls to other methods either in the class or in other classes. While higher RFC numbers should correspond to a need for more testing time in either case, high RFC numbers relative to the number of methods in a class mark the class as especially likely to need testing attention.
The tool I tried to use for this metric was the Netbeans Metrics Module. This tool has the advantage of being free, but I was not able to get the metrics module to run properly on my machine. Uday Kale was able to run it, though, and the table in his report shows an RFC range from 2 to 63 for the JDBV project. Netbeans defines the metric “as the sum of all external methods called by a class, plus all the methods those methods call”**. The value of this metric for planning tests will be greater now than later, but if used as an indicator of complexity and cost to maintain a class, trends from iteration to iteration will also be interesting.
* http://www.scitools.com/metrics.txt
** http://metrics.netbeans.org

